

Beta Release

Please be advised that our service is currently in its beta release of development. As a beta user, your feedback and suggestions are highly valuable in helping us identify and address any issues.
We kindly request your patience and understanding as we work diligently to enhance the service based on your input.

NeuroLibre Reproducible Preprints

[image: _images/card_tb.png]
As a registered preprint publisher, NeuroLibre goes beyond the traditional boundaries of research dissemination by offering
NeuroLibre Reproducible Preprints (NRPs).

Code, data, and computational runtime are not supplementary but rather integral components of published research.

Embracing this principle, NRPs are built by seamlessly combining the outputs of your preprint’s executable content with the scientific prose,
all within the same execution runtime required for your analyses.

Moving from static PDFs with code and data availability statements to NRPs is the quantum leap that modern research yearns for. With NeuroLibre, we are dedicated to make that leap as easy as it gets.

Explore a published NRP

https://doi.org/10.55458/neurolibre.00004

For further details on why moving beyond static text and illustrations is a central challenge for scientific publishing in the 21st century,
see the following perspective article by the NeuroLibre team (DuPre et al. 2022):

https://doi.org/10.1371/journal.pcbi.1009651

Bird’s eye view of the NRP publication workflow

🚀 NRPs are dynamic

Enabling you not only to execute NRPs directly in your web browser and regenerate the figures from the preprint,
but also providing support for interactive figures and even dashboards!

This interactivity allows for a more immersive exploration of the preprint,
whether by reviewers upon peer-reviewed journal submission, or by researchers who are interested in your work.

To submit an NRP you need to provide the following:

	A public code repository that has a single or a collection of Jupyter Notebooks and/or MyST markdown [https://mystmd.org] files.

	A public data repository needed to generate the outputs (typically figures) from the executable part of your content.

	Reproducible runtime configurations recognized by BinderHub [https://mybinder.readthedocs.io/en/latest/using/config_files.html].

	A bibtex formatted bibliography (paper.bib) and author information (paper.md).

Using your ORCID, you can login to NeuroLibre’s submission portal and fill out a simple form. After content moderation,
NeuroLibre starts a technical screening process, which takes place on GitHub using NeuroLibre’s one-of-a-kind editorial
workflow, powered by the OpenJournals.

♻️ NRPs are FAIR

NeuroLibre archives all the necessary reproducibility assets required to successfully build an NRP at the time of submission.

NeuroLibre’s production BinderHub, container registry, data storage, and web servers are reserved for the published NRPs, ensuring
the long-term functionality and accessibility.

This makes NRPs Findable, Accessible, Interoperable, and Reusable.

During the technical screening process, our editorial bot RoboNeuro and a screener works with you to ensure a successful build
of your NRP on NeuroLibre test servers.

After a successful build, the following reproducibility assets are transferred from our preview server (public) to our production servers
(reserved for published NRRs only) and archived individually on Zenodo:

	Docker image

	Dataset (unless already archived)

	Repository (version cut at the latest successful build)

	Built NRP (HTML pages of the executable book)

Each of these reproducibility assets is attributed to every author on the NRP, and they are assigned a DOI (Digital Object Identifier).

Once the archival process is complete, a summary PDF is generated. This PDF is necessary to officially register NRPs as preprints.

➕ More than another Binder/Jupyter instance

In addition to providing a seamless publication workflow for reproducible preprints and officially registering them for discoverability
of scholarly content, NeuroLibre overcomes an important reproducibility roadblock. Because absent the bundling of reproducibility
assets within a dedicated publication framework:

	Public container registries wipe out images.

	Future attempts to build the same images (like Binder) frequently stumble over version clashes, resulting in failures.

	Unless cached on the same server where JupyterHub runs and archived, data often slips into the realm of inaccessibility.

As a next-generation publisher, NeuroLibre ensures that your preprint retains its reproducibility prowess. With our robust framework,
we preserve and safeguard all necessary assets, leaving no room for disappearing images, version woes, or elusive data. Rest easy,
knowing your preprint remains reproducible and readily available to all.

All the archived reproducibility assets, cited references, and the link to the reproducible preprint are resource linked to the DOI assigned by NeuroLibre
upon publication (DOI: 10.55458/neurolibre).

Similar to that in traditional preprint repositories (e.g. arXiv), NeuroLibre updates metadata relationship to an Author Accepted Manuscript (AAM) or
Version of Record (VoR) after your article has been accepted for publication by a journal, following the peer review process and any revisions
requested by the reviewers or editors.

Contributions are welcome!

NeuroLibre is fully open-source and draws its strength from community-developed tools such as BinderHub [https://github.com/jupyterhub/binderhub] and Open Journals [https://github.com/openjournals].
You can find more information under our github organization [https://github.com/neurolibre].

Author guidelines

	Structure your NRP repository
	🟠 The content folder

	🟢 The binder folder (runtime)

	🔵 The binder folder (data)

	⚫️ The companion PDF

	Test your NRP
	Test locally

	1. Install Jupyter Book

	2. Manage your data

	3. Book build

	Testing on NeuroLibre servers

	Submit your NRP to NeuroLibre

Reader

	Reader guidelines

Technical screening

	Reviewer guidelines
	Technical review Criteria

	Code review

	Scientific review

	How to interact with authors

	How to interact with editors and NeuroLibre

	Conflict of interest

	Attribution

Developer documentation

	Infrastructure overview

	Bare-metal to BinderHub
	Pre-setup

	Docker-specific preparations

	Spawn a BinderHub instance using Docker

	Appendix A

	Bare-metal to local Docker registry and volumes
	Instance spawning

	External floating IP

	Firewall

	DNS specific considerations

	Volumes creation

	Docker registry setup

	BinderHub considerations

	BinderHub test mode
	First time setup

	Code integration

	Submission workflow backend
	Data server and python API

FAQ

	FAQ - Frequently Asked Questions
	How can I test a NeuroLibre submission ?

	Can I submit a non-github repository ?

	What are the hardware limits on NeuroLibre ?

	I want to contribute, how can I do that ?

	Which languages does NeuroLibre support ?

	What type of review are you doing ?

	How do I manage datasets with NeuroLibre ?

	Which version of jupyter-book and repo2data should I use ?

	How can I cache my experiments ?

	Can I use Dockerfile for my submission ?

Structure your NRP repository

Scholarly publishing has evolved from the clunky days of typewriters and snail mail, to the digital age of electronic word documents.
The next step of the evolution takes root from a GitHub repository behold the NeuroLibre Reproducible Preprints (NRP)!

[image: _images/nrp_init.png]
The illustration above is a concise overview of the key components required to bring an NRP to life from a public GitHub repository.

Prepare your NRP

The following sections provide details on the expected layout of an NRP repository that lives on GitHub.

🟠 The content folder

To provide a powerful, flexible, and interactive way to create your preprint, NRPs are based on the Jupyter Book [https://jupyterbook.org].

[image: _images/content_interact.gif]
When building the Jupyter Book for an NRP (which is a compact website), NeuroLibre expects locating your Jupyter Notebooks and/or MyST Markdown files
within a folder named content.

📑 Reference documentations

	Writing narrative content

	Writing executable content

	Allowed content types

	Citations and bibliography

	Interactive outputs

	_toc.yml

	_config.yml

Inside the content directory, you have the freedom to organize the SOURCE files as per your preference:

root/
├─ content/
│ ├─ _toc.yml [REQUIRED]
│ ├─ _config.yml [REQUIRED]
│ ├─ _neurolibre.yml [OPTIONAL]
│ ├─ my_notebook.ipynb [SOURCE]
│ ├─ my_myst.md [SOURCE]
│ ├─ MY FOLDER
│ │ ├─ another_notebook.ipynb [SOURCE]

ℹ️ The relationship between the source files and the table of contents of your NRP must be defined in the content/_toc.yml file, as it is a
REQUIRED component.

ℹ️ Another REQUIRED component is the content/_config.yml to customize the appearance and behavior of your Jupyter Book.

💻 Supported programming languages

NRPs, being part of the Jupyter ecosystem, offer the flexibility to utilize a wide range of programming languages,
provided they do not require a license (e.g., MATLAB is not supported yet, but you can use Octave).

You can take advantage of any language that has a compatible kernel listed in the Jupyter kernels [https://github.com/jupyter/jupyter/wiki/Jupyter-kernels] for writing the
executable content of your NRP.

Another important consideration is to ensure that BinderHub configurations [https://mybinder.readthedocs.io/en/latest/examples/sample_repos.html] support the language
of your choice, or you know how to create a Dockerfile to establish a reproducible runtime environment. Further detail on this matter is provided in the
following (green) section.

📝 Managing citations and bibliography in your reproducible preprint

To cite articles in your reproducible preprint, include your bibtex formatted bibliographic entries in a paper.bib file located at the root of your repository,
which is the same bibliography used by the companion PDF.

To point the Jupyter Book build to the relevant bibliography, add the following to the content/_config.yml file:

bibtex_bibfiles:
 - ../paper.bib
sphinx:
 config:
 bibtex_reference_style: author_year

For further details regarding the management of citations and bibliography in Jupyter Book, please see the reference docs [https://jupyterbook.org/en/stable/content/citations.html].

➕ Reproducible preprint in disguise (traditional article layout)

If you prefer your reproducible preprint to have a layout resembling a traditional article — single page and without sidebars —
you can achieve this by creating your content in a single Notebook or MyST markdown file. Additionally, include a content/_neurolibre.yml
file with the following content:

book_layout: traditional
single_page: index.ipynb

See an example [https://preview.neurolibre.org/book-artifacts/rrsg2020/github.com/paper/562fb392105e48b5da7a4b6bfcf82d7504ea7c71/_build/_page/index/singlehtml] of an NRP that combines the appearance of a traditional article with the powerful features of a Jupyter Book.

🎚 Make the most of your NRP with interactive visualizations

We strongly recommend incorporating interactive visualizations, such as those offered by plotly [https://plotly.com/], to enhance the value of your NRP.

By utilizing interactive visualizations, you can fully leverage the potential of your figures and present your data in a more engaging and insightful manner.

You can visit the reference JupyterBook documentation [https://jupyterbook.org/en/stable/interactive/interactive.html?highlight=interactive] to have your interactive outputs rendered in your NRP.

🟢 The binder folder (runtime)

One of the essential features of NRPs is the provision of dedicated BinderHub instances for the published preprints.
This empowers readers and researchers to interactively explore and reproduce the findings presented in the NRP through
a web browser, without installing anything to their computers.

[image: _images/binder_folder.gif]
By leveraging NeuroLibre’s BinderHub, each NRP receives its isolated computing environment, ensuring that the code, data, and
interactive elements remain fully functional and accessible.

The NRP repository’s binder folder contains all the essential runtime descriptions to tailor such isolated computing
environments for each reproducible preprint.

⚙️ How to setup your runtime

To specify your runtime and set up the necessary configuration files for your runtime environment, please refer to the binderhub configuration files documentation [https://mybinder.readthedocs.io/en/latest/using/config_files.html].

To implement this in your NRP repository, create a binder folder and place the appropriate configuration files inside it according to your runtime requirements. These configuration files will define the environment in which your preprint’s code
and interactive elements will run when accessed through NeuroLibre’s BinderHub.

⚠️ NeuroLibre specific dependencies

As we build a Jupyter Book for your NRP in the exact same runtime you defined, we need the following Python dependencies
to be present. For example, in a binder/_requirements.txt file:

repo2data>=2.6.0
jupyter-book==0.14.0

❗️We recommend not using jupyter-book versions newer than 0.14.0 as of July 2023.

Currently, we are using repo2data to download the dataset needed to run your executable content. For details, please see the following (blue) section.

🔗 Example runtime environments

You can explore the binder-examples GitHub organization [https://github.com/binder-examples] to find useful examples of configuration files.

Moreover, for additional insights and inspiration, you can visit the roboneurolibre GitHub organization [https://github.com/roboneurolibre] to explore various NRP repositories.
Observe how each preprint defines its runtimes and customizes the Binder environment to suit their research needs.

🔋 Ensuring reproducibility and resource allocation in NRPs

As of July 2023, each NRP Jupyter Book build is allocated the following resources:

	8 hours of execution time

	1 or 2 CPUs at 3GHz

	6GB of RAM

Please note that the Jupyter Book build (book build) occurs only after a successful runtime build (BinderHub).
The resource allocations mentioned above apply specifically to the book build.

Understanding the distinction between the runtime build and book build is crucial for adhering to reproducible practices.

It is strongly advised NOT to download external dependencies during the book build, as NeuroLibre cannot guarantee their long-term preservation.
As a best practice, all runtime dependencies should be handled during the runtime build using the BinderHub configuration files.

🔵 The binder folder (data)

NeuroLibre Reproducible Preprints (NRPs) aim to distill your analysis into reproducible insights.
One of the core requirements for achieving this goal is to have access to the dataset used in the analysis.

Currently, we utilize a work-in-progress tool called repo2data to facilitate the downloading of your dataset to our
servers and to associate it with the NRP you are building. To locate the necessary information, NeuroLibre searches for the binder/data_requirement.json file.

💽 Content of the data_requirement.json

Currently, repo2data is compatible with public download URIs from the following providers:

	Google Drive

	Amazon S3

	OSF

	Zenodo

	Datalad

❗️Data will not be downloaded if the URL is not from one of the providers above.

{ "src": "https://download/url/of/the/dataset",
 "dst": "/location/of/the/data/relative/to/the/binder/folder",
 "projectName": "unique_project_name"}

❗️The dst field above is not considered when your data is downloaded to the NeuroLibre servers.
On the server-side, data is set to be available at the data/unique_project_name directory, where the data folder is (read-only) mounted
to the root of your repository, i.e. next to the binder and content folders.

❗️Therefore, the dst key is only important when you are testing your notebook locally. For example, if your data_requirement.json is the following

{ "src": "https://...",
 "dst": "../../",
 "projectName": "my_nrp_data"}

then repo2data will download the data in a folder named data/my_nrp_data that is next to the folder that contains your repository, as two upper directories correspond to that location.

⭐️ Nevertheless, you don’t have to manually identify the folder location. Instead, you can use the following pattern in Python:

from repo2data.repo2data import Repo2Data
import os
data_req_path = os.path.join("..","..", "binder", "data_requirement.json") # Change with respect to the location of your notebook
repo2data = Repo2Data(data_req_path)
data_path = repo2data.install()[0]
my_data = os.path.join(data_path,'my_data.nii.gz')

In the example above, the notebook that uses repo2data is under the content/00/my_notebook.ipybn. Consequently, the data_requirement.json was located in two directories above.

After being downloaded to the server, any subsequent attempts to re-download the data will be disregarded unless modifications are made to the data_requirement.json file.

📀 Data allocation

As of July 2023, each NRP is allowed to:

	use up to 10GB of data (to be downloaded from a trusted source)

	around 8GB of runtime storage (derivatives generated after executing your book)

🗜 If you are sharing a compressed file archive (e.g., zip)

Please ensure that the parent directory is not included in the archive. Otherwise, when the
data is automatically extracted, repo2data will not be able to locate the actual content.

To achieve this on osx:

cd /to/your/data/directory
zip -r my_data.zip . -x ".*" -x "__MACOSX"

Similarly on Ubuntu:

cd /to/your/data/directory && zip -r ../my_data.zip .

⬇️ Using Google Drive to share your NRP data

Please make sure that your Drive folder (or the zip file) is publicly available, then locate your project ID (a complex array of 33 characters that you can find on the url).

Then you can construct the download url with that ID: https://drive.google.com/uc?id=${PROJECT_ID}

Example data_requirement.json:

{ "src": "https://drive.google.com/uc?id=1_zeJqQP8umrTk-evSAt3wCLxAkTKo0lC",
"dst": "./data",
"projectName": "my_data_in_gdrive"}

⬇️ Using Datalad to share your NRP data

If the src is provided with a URI that ends in .git, Repo2Data will then use the datalad to download the data.

{ "src": "https://github.com/OpenNeuroDatasets/ds000005.git",
"dst": "./data",
"projectName": "repo2data_datalad"}

⬇️ Using S3 to share your NRP data

If the src url starts with s3://, Repo2Data will use aws s3 sync --no-sign-request to download your data.

{ "src": "s3://openneuro.org/ds000005",
"dst": "./data",
"projectName": "repo2data_s3"}

⬇️ Using OSF to share your NRP data

Repo2Data uses osfclient osf -p PROJECT_ID clone command.
You will need to provide the link to the public project containing your data https://osf.io/…/ [https://osf.io/.../]:

{ "src": "https://osf.io/fuqsk/",
"dst": "./data",
"projectName": "repo2data_osf"}

If you need to download subsets from a larger a project, you can achieve this using the remote_filepath field which runs
osf -p PROJECT_ID fetch -f file command. For example:

{ "src": "https://osf.io/fuqsk/",
"remote_filepath": ["hello.txt", "test-subfolder/hello-from-subfolder.txt"],
"dst": "./data",
"projectName": "repo2data_osf_multiple"}

⬇️ Using Zenodo to share your NRP data

We also support the use of the public data repository Zenodo through “zenodo_get.”
Ensure that your project is public and has a DOI with the form “10.5281/zenodo.XXXXXXX.”

{ "src": "10.5281/zenodo.6482995",
"dst": "./data",
"projectName": "repo2data_zenodo"}

❗️If this is the case, please indicate dutring the submission that you already have a DOI for your dataset, so that the
NeuroLibre publication workflow skips the data archival step.

⚫️ The companion PDF

To publish your NRP as a preprint, a PDF is necessary. Our PDF template integrates all the reproducibility assets created
at the end of a successful book build as part of the publication.

To create a PDF, two files are required: paper.md and paper.bib at the root of your NRP repository.

✍️ Authors and affiliations

The front matter of paper.md is used to collect meta-information about your preprint:

title: 'White matter integrity of developing brain in everlasting childhood'
tags:
 - Tag1
 - Tag2
authors:
 - name: Peter Pan
 orcid: 0000-0000-0000-0000
 affiliation: "1, 2"
 - name: Tinker Bell
 affiliation: 2
affiliations:
- name: Fairy dust research lab, Everyoung state university, Nevermind, Neverland
 index: 1
- name: Captain Hook's lantern, Pirate academy, Nevermind, Neverland
 index: 2
date: 08 September 1991
bibliography: paper.bib

The corpus of this static document (paper.md) is intended for a big picture summary of the preprint
generated by the executable and narrative content you provided (in the content) folder. You can include citations
to this document from an accompanying BibTex bibliography file paper.bib.

📝 Testing the PDF compilation

Add a file .github/workflows/draft-pdf.yml to your repository:

on: [push]

jobs:
paper:
 runs-on: ubuntu-latest
 name: Paper Draft
 steps:
 - name: Checkout
 uses: actions/checkout@v3
 - name: Build draft PDF
 uses: neurolibre/neurolibre-draft-action@master
 with:
 journal: neurolibre
 # This should be the path to the paper within your repo.
 paper-path: paper.md
 - name: Upload
 uses: actions/upload-artifact@v1
 with:
 name: paper
 # This is the output path where Pandoc will write the compiled
 # PDF. Note, this should be the same directory as the input
 # paper.md
 path: paper.pdf

Beta Release

Please be advised that our service is currently in its beta release of development. As a beta user, your feedback and suggestions are highly valuable in helping us identify and address any issues.
We kindly request your patience and understanding as we work diligently to enhance the service based on your input.

Test your NRP

It is really important to first test your submission locally to alleviate further issues when deploying on Neurolibre server.
You need to make sure that:

	All the notebooks run locally with the hardware requirements from computation and data section.

	The jupyter book builds fine locally (make sure that you are not using cache files).

Test locally

Assuming that:

	you already installed all the dependencies to develop your notebooks locally

	your preprint repository follows the NeuroLibre 🗂 Preprint repository structure.

You can easily test your preprint build locally.

1. Install Jupyter Book

pip install jupyter-book

2. Manage your data

Given the following minimalistic repository structure:

.
├── binder
│ ├── requirements.txt
│ └── data_requirement.json
├── content
│ ├── _build
│ ├── notebook.ipynb
│ ├── _config.ym
│ └── _toc.yml
└── README.md

Create a directory data at the root of the repository.
Install Repo2Data [https://github.com/SIMEXP/Repo2Data] and configure the dst from the requirement file so it points to the data folder.

pip install repo2data

Run repo2data inside your notebook and get the path to the data.

install the data if running locally, or points to cached data if running on neurolibre
data_req_path = os.path.join("..", "binder", "data_requirement.json")
download data
repo2data = Repo2Data(data_req_path)
data_path = repo2data.install()

See also

Check this example for running repo2data [https://github.com/neurolibre/repo2data-caching], agnostic to server data path.

3. Book build

	Navigate to the repository location in a terminal

cd /your/repo/directory

	Trigger a jupyter book build

jupyter-book build ./content

See also

Please visit reference documentation [https://jupyterbook.org/content/execute.html?highlight=execute#execute-and-cache-your-pages] on executing and caching your outputs during a book build.

Testing on NeuroLibre servers

Meet RoboNeuro! Our preprint submission bot is at your service 24/7 to help you create a NeuroLibre preprint.

[image: _images/preview_magn.png]
We would like to ensure that all the submissions we receive meet certain requirements. To that end, we created the RoboNeuro preview service [https://robo.neurolibre.org],
where you point RoboNeuro to a public GitHub repository, enter your email address, then sit back and wait for the results.

Note

RoboNeuro book build process has two stages. First, it creates a virtual environment based on your runtime descriptions. If this stage is successful, then it proceeds to
build a Jupyter Book by re-executing your code in that environment.

	On a successful book build, we will return you a preprint that is beyond PDF!

	If the build fails, we will send two log files for your inspection.

Warning

A successful book build on RoboNeuro preview service is a prerequisite for submission.

Please note that RoboNeuro book preview is provided as a public service with limited computational resources. Therefore we encourage you to build your book locally before
requesting our online service. Instructions are available in 🖱️ Local testing.

Debugging for long NeuroLibre submission

As for mybinder, we also provide a binder submission page so you can play with your notebooks on our servers.
Our binder submission page is available here: https://test.conp.cloud.

When this process is really usefull for debugging your submission live, it can be verry long to get it.
Indeed, a jupyter book build will always occur under the hood, and as part of the build process it will try to execute everything within your submission.
This can make the build process very long (especially if you have a lot of long-running notebooks), and so you will end up waiting forever to get the binder instance.

If you are in a case where the jupyter book build fails on Neurolibre for whatever reason but works locally,
you can bypass the jupyter book build to get the interactive session almost instantly.

Note

For example if you have “out of memory” errors on Neurolibre, you can reduce the RAM requirements on the interactive session, and try to re-run the jupyter book build directly on the fly.

Just add --neurolibre-debug in your latest commit message to bypass the jupyter book build (as in this git commit [https://github.com/ltetrel/nimare-paper/commit/4d5938819ad0a21365bc849ab91d29211556c77d]).
Now if you register your repository on https://test.conp.cloud, you will have your binder instance almost instantly.
You should be able to open a terminal session or play with the notebooks from there.

Note

This setup requires a previous valid binder build. If you are not able to build your binder, then you don’t have a choice to fix the installation locally on your PC.

Warning

Please remember to remove the flag --neurolibre-debug when you are ready to submit, since NeuroLibre needs to build the jupyter book.

Beta Release

Please be advised that our service is currently in its beta release of development. As a beta user, your feedback and suggestions are highly valuable in helping us identify and address any issues.
We kindly request your patience and understanding as we work diligently to enhance the service based on your input.

Submit your NRP to NeuroLibre

Before you submit

Before submitting your NRP, please make sure that your GitHub repository adheres to the expected structure.
It is RECOMMENDED for the authors to test the functionality of their NRPs locally and using the roboneuro test service.

To submit your NRP:

	Login to the submission portal on https://neurolibre.org by using your ORCID (required).

	Click the submit button (either on the top bar or on the banner)

Submission form includes the following fields:

	Title Please provide the same title provided in your content/_config.yml.

	Repository Please provide the GitHub URL to your NRP repository.

	Branch We recommend leaving this field empty, which defaults to the main branch of your NRP repository, which is expected to be the most up to date before submission.

	Software version: If you have a release tag corresponding to the version of your submission, please indicate. Put v1.0 otherwise.

	Main subject of the paper: Select mri, fmri (the list will be extended).

	Type of the submission: Select New submission

	Preprint data DOI: Please provide if your dataset has already been given a DOI.

	Message to the editors: Briefly inform our content moderators about your submission in a few sentences, please keep it short.

After your submission, the managing editor will initiate a pre-review issue in the NeuroLibre reviews repository [https://github.com/neurolibre/neurolibre-reviews], provided that the
content moderation is successful. During the pre-review, a technical screener will be assigned to your submission and the “review” will be started, which
is a GitHub issue on the reviews repository.

Techical screening vs peer review

Technical screening is conducted to verify the functionality of your NRP.
As a preprint publisher, NeuroLibre does not assess the scientific content of the preprint.

Reader guidelines

This will help you navigate through a NeuroLibre prprint!

(talk about jb-book interface, chapters, binder icon etc…)
(inder instance specific stuff like launching notebook if markdown, create new terminal, navigate files)

Reviewer guidelines

As a NeuroLibre reviewer, you are responsible for the technical quality of the resources available for our community. Neurolibre welcome submissions along two tracks of neuroscience-related material: (1) tutorials, (2) paper companions. Prior to review, an editor establishes that the submission qualifies in principles, and an administrator has made the resource available for the neurolibre binder, so you can review the material directly on our portal (the link is at the top of the README.md file). Now your role is to ensure the submitted materials take full advantage of the notebook format, prior to final publication. Specific criteria for review are listed below.

Technical review Criteria

Examples of high quality tutorials can be found in the scikit-learn documentation, for example this one on cross-validation [https://scikit-learn.org/stable/modules/cross_validation.html]. Examples of high quality article companions can be found as collab links in the article building blocks of interpretability [https://distill.pub/2018/building-blocks/]. Specific areas for review include:

	Is the text clear and easy to read? In particular, are the sentences free of jargon?

	Are the figures properly annotated and help understand the flow of the notebook?

	Are the notebooks of appropriate lengths?

	Are the notebooks split into logical sections? Could the sections be split or merged between notebooks?

	For paper companions, is it possible to link each section of the notebook to a figure, or a section of the paper?

	Are the code cells short and readable?

	Should portions of the code be refactored into a library?

Code review

Note that you are not expected to review code libraries shipped with the notebooks. This work is better suited for other publication venues, such as the Journal of Open Source Software [https://joss.theoj.org/]. Minimal feedback is encouraged in the following areas:

	is the code organized into logical folder structure?

	is the code documented?

	are there automated tests implemented?

Scientific review

Your are not expected to review the scientific soundness of the work. This step is typically handled by traditional peer-review in scientific journals. However, if a work appears to be of obvious unsufficient quality, we encourage you to contact the editors privately and suggest that the submission be withdrawn.

How to interact with authors

We encourage you to open as many issues as necessary to reach a high quality for the submission. For this purpose, you will use the github issue tracking system on the repository associated with the submission. Please assign the issues to the lead author of the submission, who will submit a pull request in order to address your comments. Review the pull request and merge it if you think it is appropriate. You can also submit a pull request yourself and ask the author to approve the changes. Please remain courteous and constructive in your feedback, and follow our code of conduct.

When you have completed your review, please leave a comment in the review issue saying so. You can include in your review links to any new issues that you the reviewer believe to be impeding the acceptance of the repository.

How to interact with editors and NeuroLibre

You can tag the editors in any of your issues. If you need to communicate privately with an editor, you can use direct messages on the mattermost brainhack forum [https://mattermost.brainhack.org]. You can also post your questions in the ~neurolibre-reviewers channel, if you want the entire NeuroLibre community to help. Just be mindful that authors of the submission have potentially access to this public channel.

Conflict of interest

The definition of a conflict of Interest in peer review is a circumstance that makes you “unable to make an impartial scientific judgment or evaluation.” (PNAS Conflict of Interest Policy). NeuroLibre is concerned with avoiding any actual conflicts of interest, and being sufficiently transparent that we avoid the appearance of conflicts of interest as well.

As a reviewer, conflict of interests are your present or previous association with any authors of a submission: recent (past four years) collaborators in funded research or work that is published; and lifetime for the family members, business partners, and thesis student/advisor or mentor. In addition, your recent (past year) association with the same organization of a submitter is a COI, for example, being employed at the same institution.

If you have a conflict of interest with a submission, you should disclose the specific reason to the submissions’ editor. This may lead to you not being able to review the submission, but some conflicts may be recorded and then waived, and if you think you are able to make an impartial assessment of the work, you should request that the conflict be waived. For example, if you and a submitter were two of 2000 authors of a high energy physics paper but did not actually collaborate. Or if you and a submitter worked together 6 years ago, but due to delays in the publishing industry, a paper from that collaboration with both of you as authors was published 2 year ago. Or if you and a submitter are both employed by the same very large organization but in different units without any knowledge of each other.

Declaring actual, perceived, and potential conflicts of interest is required under professional ethics. If in doubt: ask the editors.

Attribution

Some material in this section was adapted from the “Journal of Open Source Software” reviewing guidelines [https://github.com/openjournals/joss/blob/master/docs/reviewer_guidelines], released under an MIT license.

Infrastructure overview

At the bottom of our infrastructure, we rely on openstack [https://www.openstack.org/] which spawns our multiple VMs (what we will reffer later as instance) and virtual volumes.
After successfull spawning of the instance, it is assigned a floating IP used to connect to it from the outside world.
The cloudflare DNS [https://www.cloudflare.com/] then properly configure the choosen domain name under *.conp.cloud automatically pointing to the assigned floating IP.
When the network has been properly setup, the installation can continue with kubernetes [https://kubernetes.io/] and finishes with BinderHub [https://BinderHub.readthedocs.io/en/latest/index.html].

We want to share our experience with the community, hence all our installation scripts are open-source available under
neurolibre/kubeadm-boostrap [https://github.com/neurolibre/kubeadm-bootstrap] and neurolibre/terraform-binderhub [https://github.com/neurolibre/terraform-binderhub].

Warning

NeuroLibre is still at an alpha stage of development, the github repositories will change frequently so be carefull if you use them.

You can find more details on the installation at Bare-metal to BinderHub.

Bare-metal to BinderHub

Installation of the BinderHub from bare-metal is fully automatic and reproducible through terraform [https://www.terraform.io/] configuration
runned using this Docker container [https://github.com/neurolibre/neurolibre-binderhub/blob/master/Dockerfile].

The following is intended for neurolibre backend developpers, but can be read by anyone interrested in our process.
It assumes that you have basic knowledge on using the command line on a remote server (bash, ssh authentification..).

The sections Pre-setup and Docker-specific preparations should be done just the first time.
Once it is done, you can directly go to the section Spawn a BinderHub instance using Docker.

Pre-setup

You first need to prepare the necessary files that will be used later to install and ssh to the newly spawned BinderHub instance.

We are using git-crypt [https://github.com/AGWA/git-crypt] to encrypt our password files for the whole process, these can be uncrypted with the appropriate gitcrypt-key.
For the ssh authentication on the BinderHub server, you have two choices : i) use neurolibre’s key (recommended) or ii) use your own ssh key.

Note

You can request the gitcrypt-key, neurolibre’s ssh key, cloudflare and arbutus API keys to any infrastructure admin if authorized.

Warning

You should never share the aformentioned file to anyone.

	Create a folder on your local machine, which is later to be mounted to the Docker container for securely using your keys during spawning a BinderHub instance.
Here, we will call it my-keys for convenience:

cd /home/$USER
mkdir /my-keys

	Option (i), use neurolibre’s key (recommended):

	Simply copy the public id_rsa.pub and private key id_rsa to /home/$USER/my-keys/

cp id_rsa* /home/$USER/my-keys/

	Option (ii), use your own local key:

	Make sure your public key and private are under /home/$USER/.ssh an copy it to /home/$USER/my-keys.

cp /home/$USER/.ssh/id_rsa* /home/$USER/my-keys/

	If not already associated, add your local’s key to your GitHub account:

	You can check and add new keys on your GitHub settings [https://github.com/settings/keys].

	Test your ssh connection to your GitHub account by following these steps [https://help.github.com/en/github/authenticating-to-github/testing-your-ssh-connection].

	Finally, copy the key gitcrypt-key in /home/$USER/my-keys/.

Docker-specific preparations

You will install a trusted Docker image that will later be used to spawn the BinderHub instance.

	Install Docker [https://www.Docker.com/get-started] and log in to the dockerhub with your credentials.

sudo docker login

	Pull the Docker image that encapsulates the barebones environment to spawn a BinderHub instance with our provider (compute canada as of late 2019).
You can check the different tags available under our dockerhub user [https://hub.Docker.com/r/conpdev/neurolibre-instance/tags].

sudo docker pull conpdev/neurolibre-instance:v1.3

Spawn a BinderHub instance using Docker

To achieve this, you will instantiate a container (from the image you just pulled) mounted with specific volumes from your computer.
You will be mounting two directories into the container: /my_keys containing the files from Pre-setup, and /instance_name containing the terraform recipe, artifacts and API keys.

Warning

The Docker container that you will run contain sensitive information (i.e. your ssh keys, passwords, etc), so never share it with anyone else.
If you need to share information to another developer, share the Dockerfile and/or these instructions.

Note

The Docker image itself has no knowledge of the sensitive files since they are used just at runtime
(through entrypoint [https://docs.docker.com/engine/reference/run/#entrypoint-default-command-to-execute-at-runtime] command).

	Place a main.tf file (see Appendix A for details) into a new folder /instance-name, which describes the terraform recipe for spawning a BinderHub instance on the cloud provider.
For convenience, we suggest that you use the actual name of the instance (value of the project_name field in main.tf).

mkdir /home/$USER/instance-name
vim /home/$USER/instance-name/main.tf

Note

If you choose not to copy main.tf file to this directory, you will be asked to fill out one manually during container runtime.

	Now you can copy the cloudflare keys_cc.sh and computecanada/arbutus *openrc.sh API keys.

cp PATH/TO/keys_cc.sh /home/$USER/instance-name/
cp PATH/TO/*openrc.sh /home/$USER/instance-name/

	Start the Docker container which is going to spawn the BinderHub instance:

sudo docker run -v /home/$USER/my_keys:/tmp/.ssh -v /home/$USER/instance-name:/terraform-artifacts -it neurolibre-instance:v1.2

	Take a coffee and wait! The instance should be ready in 5~10 minutes.

	For security measure, stop and delete the container that you used to span the instance:

sudo docker stop conpdev/neurolibre-instance:v1.3
sudo docker rm conpdev/neurolibre-instance:v1.3

If you need more information about this docker, check the neurolibre repository [https://github.com/neurolibre/neurolibre-binderhub].

Appendix A

Here we describe the default terraform recipe that can be used to spawn a BinderHub instance, it is also available online [https://github.com/neurolibre/neurolibre-binderhub/blob/master/terraform/main.tf].
There are three different modules used by our terraform scripts, all run consecutively and only if the previous one succeeded.

	provider populates terraform with the variables related to our cloud provider (compute canada as of late 2019):

	project_name: name of the instances (will be project_name_master and project_name_nodei)

	nb_nodes: number of k8s nodes excluding the master node

	instance_volume_size: main volume size of the instances in GB including the master node

	ssh_authorized_keys: list of the public ssh keys that will be allowed on the server

	os_flavor_master: hardware configuration of the k8s master instance in the form c{n_cpus}-{ram}gb-{optionnal_vol_in_gb}

	os_flavor_node: hardware configuration of the k8s node instances

	image_name: OS image name used by the instance

	docker_registry: domain for the Docker registry, if empty it uses Docker.io by default

	docker_id: user id credential to connect to the Docker registry

	docker_password: password credential to connect to the Docker registry

Warning

The flavors and image name are not fully customizable and should be set accordingly to the provider’s list.
You can check them through openstack API using openstack flavor list && openstack image list or using the horizon dashboard.

	dns related to cloudflare DNS configuration:

	domain: domain name to access your BinderHub environment, it will automatically point to the k8s master floating IP

	binderhub specific to binderhub configuration:

	binder_version: you can check the current BinderHub version releases here [https://jupyterhub.github.io/helm-chart/]

	TLS_email: this email will be used by Let’s Encrypt [https://letsencrypt.org/] to request a TLS certificate

	TLS_name: TLS certificate name should be the same as the domain but with dashes - instead of points .

	mem_alloc_gb: Amount of RAM (in GB) used by each user of your BinderHub

	cpu_alloc: Number of CPU cores
(Intel® Xeon® Gold 6130 [https://ark.intel.com/content/www/us/en/ark/products/120492/intel-xeon-gold-6130-processor-22m-cache-2-10-ghz.html]
for compute canada) used by each user of your BinderHub

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	 module "provider" {
 source = "git::ssh://git@github.com/neurolibre/terraform-binderhub.git//terraform-modules/providers/openstack"

 project_name = "instance-name"
 nb_nodes = 1
 instance_volume_size = 100
 ssh_authorized_keys = ["<redacted>"]
 os_flavor_master = "c4-30gb-83"
 os_flavor_node = "c16-60gb-392"
 image_name = "Ubuntu-18.04.3-Bionic-x64-2020-01"
 is_computecanada = true
 docker_registry = "binder-registry.conp.cloud"
 docker_id = "<redacted>"
 docker_password = "<redacted>"
 }

 module "dns" {
 source = "git::ssh://git@github.com/neurolibre/terraform-binderhub.git//terraform-modules/dns/cloudflare"

 domain = "instance-name.conp.cloud"
 public_ip = "${module.provider.public_ip}"
 }

 module "binderhub" {
 source = "git::ssh://git@github.com/neurolibre/terraform-binderhub.git//terraform-modules/binderhub"

 ip = "${module.provider.public_ip}"
 domain = "${module.dns.domain}"
 admin_user = "${module.provider.admin_user}"
 binder_version = "v0.2.0-n121.h6d936d7"
 TLS_email = "<redacted>"
 TLS_name = "instance-name-conp-cloud"
 mem_alloc_gb = 4
 cpu_alloc = 1
 docker_registry = "${module.provider.docker_registry}"
 docker_id = "${module.provider.docker_id}"
 docker_password = "${module.provider.docker_password}"
 }

Bare-metal to local Docker registry and volumes

Internet speed is the top-priority for our server.
We already experienced in the past slow internet speed on Arbutus [https://docs.computecanada.ca/wiki/Cloud_resources#Arbutus_cloud_.28arbutus.cloud.computecanada.ca.29]
that caused us a lot of issues, specifically on the environment building phase.
The binderhub was stuck at the building phase, trying in vain to pull images from docker.io to our server.

Note

When the notebook was successfully created, slow internet is not an issue anymore because the interaction between the user and the binder instance is not demanding.

Among many ideas [https://github.com/jupyterhub/binderhub/issues/864], one of them that came up pretty quickly was to simply create our own local docker registry on arbutus.
This would allow for low latency when pulling the images from the registry (connected to the local network where the binderhub resides).

The following documentation explains how we built our own docker registry on Arbutus, it is intended for developpers who want to spawn a new Binderhub on another openstack host.
It contains also instructions on how to create volumes on openstack (for the Repo2Data databases) and attach them to the docker registry.

Note

It is still not the case, but in the future we expect the docker registry spawning to be part of the terrafrom configurations.

Instance spawning

The first thing to do is to create a new instance on Arbutus using openstack.
It provides a graphical interface to interract with our openstack project from computecanada.

You will first need to log-in into the openstack dashboard [https://arbutus.cloud.computecanada.ca/].

Note

You can request the password to any infrastructure admin if authorized.

Now you can spawn a new instance under Compute/Instances with the Launch Instance button.

[image: _images/launch_instance.png]
A new window will appear where you can describe the instance you want, the following fields are mandatories:

	Instance Name: name of the instance, choose whatever you want

	Source: OS image name used by the instance, select *Bionic-x64*

	Flavor: hardware configuration of the instance, c8-30gb-186 is more than enough

	Key Pair: list of the public ssh keys that will be allowed on the server, find the one that match the binderhub you created in Bare-metal to BinderHub

Click on Launch instance at the bottom when you finished.

External floating IP

To access the instance from the outside, we need a public floating IP pointing to the instance.
If you don’t already have one, you can allocate a new IP under Network/Floating IPs and by clicking to Allocate IP To Project.

When it is done, click on the right of the instance under Compute/Instances to associate this new floating IP.

[image: _images/instance_menu.png]

Warning

You have a limited amount of floating IPs, so be carefull before using one.

Firewall

Firewall rules will help you protect the instance against intruders and can be created on openstack via Security Groups.

	Create a new Security Group under Network/Security Groups.

	Click on Manage rules on the right and create an IPV4 rule for all IP Protocol and Port Range, with a Remote CIDR from your local network.

For example, if the internal IP address from your instances is in the range 192.167.70.XX, the Remote CIDR would be 192.167.70.0/24.

Note

Using a Remote CIDR instead of Security Group could be considered as unsafe. But in our case it is the easiest way to allow access, since all our binderhub instances uses the same private network.

	Enable also the ports 22 (SSH), 80 (HTTP) and 443 (HTTPS).

	Update the Security Group under Compute/Instances, and click on the right to select Edit Security Groups.

You should now have ssh access for the ubuntu user on the instance

ssh ubuntu@<floating_ip>

Warning

If you cannot access the instance at this time, you should double check the public key and/or the firewall rules.
It is also possible you hit some limit rate from compute canada, so retry later.

DNS specific considerations

We will need to secure the Docker registry through HTTPS to use it with Binderhub, it is not possible otherwise [https://github.com/jupyterhub/binderhub/issues/992].

The Cloudflare DNS will defined the registry domain and provide the TLS certificate for us.

	Log-in to cloudflare [https://dash.cloudflare.com/login]

Note

You can request the password to any infrastructure admin if authorized.

	Under the DNS tab, you have the option to create a new record

[image: _images/dns_registry.png]

	Create an A record with a custom sub-domain, and the IPV4 address pointing to the floating IP from External floating IP.

Volumes creation

One feature of Neurolibre is to provide database access to the users of the Binderhub, through user predefined Repo2Data requirement file [https://github.com/SIMEXP/Repo2Data#input].
These databases are stored into a specific volume on the Docker registry instance.

In the same time, another specific volume contains all the docker images for the registry.

These volumes will be created through openstack.

	Go under Volumes/Volumes tab

	Click on Create a Volume and define the name of the volume and its storage size

	Attach this volume to the Docker registry instance by clicking on the right of the instance under Compute/Instances

	Repeat the process from (1) to (3) to create the Docker registry image volume

Once the volumes are created on openstack, we can ssh to the registry instance and mount the volumes:

	Check that the volume(s) are indeed attached to the instance (should be /dev/vdc):

sudo fdisk -l

	Now we can configure the disk to use it,

sudo parted /dev/vdc
mklabel gpt
mkpart
(enter)
ext3
0%
100%
quit

	Check that the partition appears (should be /dev/vdc1):

sudo fdisk -l

	Format the partition,

sudo mkfs.ext3 /dev/vdc1

	Create a directory and mount the partition on it:

sudo mkdir /DATA
sudo chmod a+rwx /DATA
sudo mount /dev/vdc1 /DATA

	Check if /dev/vdc1 is mounted on /DATA

	Repeat all the steps from (1) to (6) for the Docker registry volume (name of directory would be /docker-registry).

Docker registry setup

After ssh to the instance, install Docker on the machine by following the official documentation [https://docs.docker.com/install/linux/docker-ce/ubuntu/#install-docker-engine---community].

We will now secure the registry with a password.
Create a directory auth and a new user and password:

mkdir auth
sudo docker run --entrypoint htpasswd registry:2.7.0 -Bbn user password > auth/htpasswd

Create also a folder that hold the registry content (for easier backup):

sudo mkdir /docker-registry

After that you can launch the registry,

sudo docker run -d -p 80:80 --restart=always --name registry \
-v /docker-registry:/var/lib/registry \
-v /home/ubuntu/auth:/auth -e "REGISTRY_AUTH=htpasswd" \
-e "REGISTRY_AUTH_HTPASSWD_REALM=Registry Realm" \
-e REGISTRY_AUTH_HTPASSWD_PATH=/auth/htpasswd \
-e REGISTRY_HTTP_ADDR=0.0.0.0:80 \
-e REGISTRY_STORAGE_DELETE_ENABLED=true \
registry:2.7.0

Warning

/docker-registry is the Docker registry volume that we configured in Volumes creation.

Now the registry should be running, follow this documentation [https://docs.docker.com/registry/deploying/#copy-an-image-from-docker-hub-to-your-registry] to test it.

You can try it on your machine (or another instance).
You would first need to log-in to the Docker registry using the domain name you configure my-binder-registry.conp.cloud in DNS specific considerations:

sudo docker login my-binder-registry.conp.cloud --username user --password password
sudo docker pull ubuntu:16.04
sudo docker tag ubuntu:16.04 my-binder-registry.conp.cloud/my-ubuntu
sudo docker push my-binder-registry.conp.cloud/my-ubuntu

Note

The Docker registry can be accessed through its HTTP api [https://docs.docker.com/registry/spec/api/]. This is how you can delete images from the registry for example.

BinderHub considerations

On each k8s node (including the worker), you will also need to log-in.
You may also need to add the docker config to the kubelet lib, so the docker registry
is properly configured on you kubernetes cluster.

sudo docker login my-binder-registry.conp.cloud --username user --password password
cp /home/${admin_user}/.docker/config.json /var/lib/kubelet/

BinderHub test mode

This document explains how to contribute to BinderHub from a bare-metal server.
If you are a Neurolibre dev, you don’t need to follow First time setup section,
just jump directly to Code integration section.

First time setup

Create an instance with openstack using bionic image, don’t forget to assign a floating IP.
After, you can ssh to this instance.

Note

You can find detailed instructions on how to create an openstack instance in Bare-metal to local Docker registry and volumes.

All the following should be run as root :

sudo su - root

Now install docker [https://docs.docker.com/install/linux/docker-ce/ubuntu/].

Install npm and other dependencies :

apt-get install libssl-dev libcurl4-openssl-dev python-dev python3 python3-pip curl socat
curl -sL https://deb.nodesource.com/setup_13.x | sudo -E bash -
apt-get install -y nodejs

Install minikube [https://minikube.sigs.k8s.io/docs/start/linux/] for a bare-metal server.

Install kubectl [https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl-on-linux].

Warning

Don’t forget to let kubectl run commands as your own user: sudo chown -R $USER $HOME/.kube $HOME/.minikube.

Install binderhub repo:

git clone https://github.com/jupyterhub/binderhub
cd binderhub

You can now follow the contribution guide [https://github.com/jupyterhub/binderhub/blob/master/CONTRIBUTING.md#one-time-installation] from step 3.

Note

Since you are in a bare-metal environment like, you don’t need to use eval $(minikube docker-env)

You can now connect and verify the binderhub installation by accessing http://localhost:7777/.

Code integration

To make changes to the K8s integration of BinderHub, such as injecting repo2data specific labels to a build pod, we need to bring up a BinderHub for development.

The following guidelines are inhereted from the original BinderHub docs [https://github.com/jupyterhub/binderhub/blob/master/CONTRIBUTING.md#kubernetes-integration-changes]. This documentation assumes that the development
is to be done in a remote node via ssh access.

	ssh into the previously configured node

Note

Ask any infrastructure admin for the current binderhub debug instance, if authorized.

	Launch shell as the root user:

sudo su - root

	Make sure that the following apt packages are installed

	npm

	git

	curl

	python3

	python3-pip

	socat

	Ensure that the minikube is installed, if not follow these instructions [https://kubernetes.io/docs/tasks/tools/install-minikube/].

	Clone the BinderHub repo and cd into it:

git clone https://github.com/jupyterhub/binderhub
cd binderhub

	Start minikube:

minikube start

	Install helm to the minikube cluster:

curl https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get | bash

	Initialize helm in the minikube cluster:

helm init

	Add JupyterHub to the helm charts:

helm repo add jupyterhub https://jupyterhub.github.io/helm-chart/
helm repo update

The process is successfull if you see the Hub is up message.

	Install BinderHub and its development requirements:

python3 -m pip install -e . -r dev-requirements.txt

	Install JupyterHub in the minikube with helm:

./testing/minikube/install-hub

	Make minikube use the host Docker daemon :

eval $(minikube docker-env)

Expect 'none' driver does not support 'minikube docker-env' command message.
This is intended behavior.

	Run helm list command to see if the JupytherHub is listed. It should look like:

binder-test-hub 1 DEPLOYED jupyterhub-0.9.0-beta.4 1.1.0

Now, you are ready to start BinderHub with a config file. As done in the reference doc,
start the binderhub with the config in the testing directory:

python3 -m binderhub -f testing/minikube/binderhub_config.py

Note

You are starting BinderHub with module name. This is possible thanks to the step-10 above.
In that step, -e argument is passed to pip to point the local ../binderhub
directory as the project path via . value.
This is why the changes you made in the /binderhub directory will take effect.

There are some details worth knowing in the testing/minikube/binderhub_config.py file, such as:

c.BinderHub.hub_url = 'http://{}:30123'.format(minikube_ip)

This means that upon a successful build, the BinderHub session will be exposed
to your_minikube_IP:30123. To find out your minikube IP, you can Simply
run minikube ip command.

The port number 30123 is described in jupyterhub-helm-config.yaml.

If everything went right, then you should be seeing the following message:

[I 200318 23:53:33 app:692] BinderHub starting on port 8585

Just leave this terminal window as is. Open a new terminal and do ssh forward
the port 8585 to the port 4000 of your own computer by:

ssh -L 4000:127.0.0.1:8585 ubuntu@<floating-ip-to-the-node>

Open your web browser and visit http://localhost:4000/. BinderHub should
be running here.

When you start a build project by pointing BinderHub to a GitHub repo, a pod
will be associated with the process. You can see this pod by opening a third
terminal in your computer. Do not login shell as root in the second terminal,
which is used for ssh 8585-->4000 port forwarding.

In the 3rd terminal, do the steps 1 and 2 (above), then:

kubectl get pods -n binder-test

If you injected some metadata, label etc. to a pod, you can see by:

kubectl get describe -n binder-test <pod_name>

It is expected that you’ll receive a 404 response after a successful Binder build.
This is because the user is automatically redirected from 8585 to the instance served at your_minikube_IP:30123.

If you would like to interact with a built environment, you need to
forward your_minikube_IP:30123 to another port in your laptop
using another terminal.

Finally, Docker images created by Binder builds in the minikube host
can be seen simply by docker images. If you’d like to switch docker
environment back to the default user, run eval $(docker-env -u).

Terminate the BinderHub running on port 8585 by simply ctrl+c.

To delete the JupyterHub running on minikube, first helm list, then
helm delete --purge <whatever_the_name_is>.

Further tips such as using a local repo2docker installation instead of
the one comes in a container, enabling debug logging (really useful) and more,
please visit the original resource [https://github.com/jupyterhub/binderhub/blob/master/CONTRIBUTING.md#tip-use-local-repo2docker-version].

To see how BinderHub automates building and publishing images for helm
charts, please visit the chartpress [https://github.com/jupyterhub/chartpress].

Submission workflow backend

The submission workflow backend has several components that are still not part of the terraform installation.
It is divided into multiple parts:
* the data server which serves the jupyter books
* the python API to communicate with the bind, communicate with the API, archive and deal with DOIs.
* front-end for the website design, forked from JOSS [https://joss.theoj.org/]

Data server and python API

You will find all instructions in the github repo: https://github.com/neurolibre/neurolibre-data-api
It has two branches: main for the test server and prod for the production server.

FAQ - Frequently Asked Questions

	How can I test a NeuroLibre submission ?

	Can I submit a non-github repository ?

	What are the hardware limits on NeuroLibre ?

	I want to contribute, how can I do that ?

	Which languages does NeuroLibre support ?

	What type of review are you doing ?

	How do I manage datasets with NeuroLibre ?

	Which version of jupyter-book and repo2data should I use ?

	How can I cache my experiments ?

	Can I use Dockerfile for my submission ?

How can I test a NeuroLibre submission ?

You can test your NeuroLibre submission using our RoboNeuro preview service [https://roboneuro.herokuapp.com].
Make sure to follow Test your NRP if you need more details.

Can I submit a non-github repository ?

We don’t accept non-github submission.
Still if you need the interactive binder, you can use any of those providers [https://binderhub.readthedocs.io/en/latest/developer/repoproviders.html#supported-repoproviders].

What are the hardware limits on NeuroLibre ?

Running time should take less than 8 hours to execute uncached (that includes all notebooks and book build) with or 2 CPU@3GHz.
You need use less than ~7.5GB of RAM, take less than 10GB runtime storage and no more than 5GB of data.

I want to contribute, how can I do that ?

It would be a pleasure to include external people on our project, please reach out to us via our mattermost brainhack forum [https://mattermost.brainhack.org] or #TODO:EMAIL!
There are fundamentally two ways to contribute to NeuroLibre: as a reviewer or as a developper.

The reviewer team is in charge of checking if submissions execute ok on our servers, there are also exchanging with the author to help them improve it.
Developer team works on the binderhub administration, backend workflows and frontend (including github integrations, and JOSS website template).

Which languages does NeuroLibre support ?

All languages supported by the jupyter ecosystem, check the following list [https://github.com/jupyter/jupyter/wiki/Jupyter-kernels].

What type of review are you doing ?

We are a preprint service, and so we stand for minimalistic reviews.
This includes basic formatting, and checking if code executes.

How do I manage datasets with NeuroLibre ?

We use repo2data [https://github.com/SIMEXP/Repo2Data] to manage input data, and cache.
For more information please check the data related section.

Which version of jupyter-book and repo2data should I use ?

We always recommend latest versions for better compatibility.
For jupyter-book you are free to use any version you like, since we rely only on the compiled artifcats.
For repo2data, we highly advise to match latest version because this is what is used on the backend.

How can I cache my experiments ?

If you have some cache data, you can use repo2data to make the data available on NeuroLibre.
Then follow the information about jupter-book caching here [https://jupyterbook.org/content/execute.html?highlight=execute#execute-and-cache-your-pages].

Can I use Dockerfile for my submission ?

As highlghted in our documentation, we don’t recommend building with Dockerfiles.
However if you don’t have choice, you can check our section,
and more specifically binder with Dockerfile instructions [https://mybinder.readthedocs.io/en/latest/tutorials/dockerfile.html].

Index

Warning

NeuroLibre is at an alpha stage of development, and is not currently open for submissions.

🖱️ Local testing

Assuming that:

	you already installed all the dependencies to develop your notebooks locally

	your preprint repository follows the NeuroLibre 🗂 Preprint repository structure.

You can easily test your preprint build locally.

1. Install Jupyter Book

pip install jupyter-book

2. Manage your data

Given the following minimalistic repository structure:

.
├── binder
│ ├── requirements.txt
│ └── data_requirement.json
├── content
│ ├── _build
│ ├── notebook.ipynb
│ ├── _config.ym
│ └── _toc.yml
└── README.md

Create a directory data at the root of the repository.
Install Repo2Data [https://github.com/SIMEXP/Repo2Data] and configure the dst from the requirement file so it points to the data folder.

pip install repo2data

Run repo2data inside your notebook and get the path to the data.

install the data if running locally, or points to cached data if running on neurolibre
data_req_path = os.path.join("..", "binder", "data_requirement.json")
download data
repo2data = Repo2Data(data_req_path)
data_path = repo2data.install()

See also

Check this example for running repo2data [https://github.com/neurolibre/repo2data-caching], agnostic to server data path.

3. Book build

	Navigate to the repository location in a terminal

cd /your/repo/directory

	Trigger a jupyter book build

jupyter-book build ./content

See also

Please visit reference documentation [https://jupyterbook.org/content/execute.html?highlight=execute#execute-and-cache-your-pages] on executing and caching your outputs during a book build.

Beta Release

Please be advised that our service is currently in its beta release of development. As a beta user, your feedback and suggestions are highly valuable in helping us identify and address any issues.
We kindly request your patience and understanding as we work diligently to enhance the service based on your input.

NeuroLibre Reproducible Preprints

[image: _images/card_tb.png]
As a registered preprint publisher, NeuroLibre goes beyond the traditional boundaries of research dissemination by offering
NeuroLibre Reproducible Preprints (NRPs).

Code, data, and computational runtime are not supplementary but rather integral components of published research.

Embracing this principle, NRPs are built by seamlessly combining the outputs of your preprint’s executable content with the scientific prose,
all within the same execution runtime required for your analyses.

Moving from static PDFs with code and data availability statements to NRPs is the quantum leap that modern research yearns for. With NeuroLibre, we are dedicated to make that leap as easy as it gets.

Explore a published NRP

https://doi.org/10.55458/neurolibre.00004

For further details on why moving beyond static text and illustrations is a central challenge for scientific publishing in the 21st century,
see the following perspective article by the NeuroLibre team (DuPre et al. 2022):

https://doi.org/10.1371/journal.pcbi.1009651

Bird’s eye view of the NRP publication workflow

🚀 NRPs are dynamic

Enabling you not only to execute NRPs directly in your web browser and regenerate the figures from the preprint,
but also providing support for interactive figures and even dashboards!

This interactivity allows for a more immersive exploration of the preprint,
whether by reviewers upon peer-reviewed journal submission, or by researchers who are interested in your work.

To submit an NRP you need to provide the following:

	A public code repository that has a single or a collection of Jupyter Notebooks and/or MyST markdown [https://mystmd.org] files.

	A public data repository needed to generate the outputs (typically figures) from the executable part of your content.

	Reproducible runtime configurations recognized by BinderHub [https://mybinder.readthedocs.io/en/latest/using/config_files.html].

	A bibtex formatted bibliography (paper.bib) and author information (paper.md).

Using your ORCID, you can login to NeuroLibre’s submission portal and fill out a simple form. After content moderation,
NeuroLibre starts a technical screening process, which takes place on GitHub using NeuroLibre’s one-of-a-kind editorial
workflow, powered by the OpenJournals.

♻️ NRPs are FAIR

NeuroLibre archives all the necessary reproducibility assets required to successfully build an NRP at the time of submission.

NeuroLibre’s production BinderHub, container registry, data storage, and web servers are reserved for the published NRPs, ensuring
the long-term functionality and accessibility.

This makes NRPs Findable, Accessible, Interoperable, and Reusable.

During the technical screening process, our editorial bot RoboNeuro and a screener works with you to ensure a successful build
of your NRP on NeuroLibre test servers.

After a successful build, the following reproducibility assets are transferred from our preview server (public) to our production servers
(reserved for published NRRs only) and archived individually on Zenodo:

	Docker image

	Dataset (unless already archived)

	Repository (version cut at the latest successful build)

	Built NRP (HTML pages of the executable book)

Each of these reproducibility assets is attributed to every author on the NRP, and they are assigned a DOI (Digital Object Identifier).

Once the archival process is complete, a summary PDF is generated. This PDF is necessary to officially register NRPs as preprints.

➕ More than another Binder/Jupyter instance

In addition to providing a seamless publication workflow for reproducible preprints and officially registering them for discoverability
of scholarly content, NeuroLibre overcomes an important reproducibility roadblock. Because absent the bundling of reproducibility
assets within a dedicated publication framework:

	Public container registries wipe out images.

	Future attempts to build the same images (like Binder) frequently stumble over version clashes, resulting in failures.

	Unless cached on the same server where JupyterHub runs and archived, data often slips into the realm of inaccessibility.

As a next-generation publisher, NeuroLibre ensures that your preprint retains its reproducibility prowess. With our robust framework,
we preserve and safeguard all necessary assets, leaving no room for disappearing images, version woes, or elusive data. Rest easy,
knowing your preprint remains reproducible and readily available to all.

All the archived reproducibility assets, cited references, and the link to the reproducible preprint are resource linked to the DOI assigned by NeuroLibre
upon publication (DOI: 10.55458/neurolibre).

Similar to that in traditional preprint repositories (e.g. arXiv), NeuroLibre updates metadata relationship to an Author Accepted Manuscript (AAM) or
Version of Record (VoR) after your article has been accepted for publication by a journal, following the peer review process and any revisions
requested by the reviewers or editors.

Contributions are welcome!

NeuroLibre is fully open-source and draws its strength from community-developed tools such as BinderHub [https://github.com/jupyterhub/binderhub] and Open Journals [https://github.com/openjournals].
You can find more information under our github organization [https://github.com/neurolibre].

Warning

NeuroLibre is at an alpha stage of development, and is not currently open for submissions.

🗂 Preprint repository structure

We expect to find all the submission material in a public GitHub repository that has the following structure:

.

├── binder

│ ├── requirements.txt [https://mybinder.readthedocs.io/en/latest/using/config_files.html#requirements-txt-install-a-python-environment]

│ └── (data_requirement.json [https://github.com/SIMEXP/Repo2Data#input])

│

├── content

│ ├── _toc.yml [https://jupyterbook.org/structure/toc.html]

│ ├── _config.yml [https://jupyterbook.org/customize/config.html]

│ ├── 01-simple_notebook.ipynb [https://github.com/neurolibre/repo2data-caching/blob/master/notebooks/nilearn-example.ipynb]

│ └── (…)

├── paper.md

└── paper.bib

Our meta anlaysis on myelin submission which is publically available in this github repository [https://github.com/Notebook-Factory/myelin-meta-analysis] should help you understand the layout.

Warning

If RoboNeuro does not see this file layout, it will fail to build the jupyter book build (but may be able to build the computing environment).
Make sure that your file layout never change during runtime (especially if using a Dockerfile).

⏩ Quickstart: Preprint templates

To give you a head-start, we created preprint template repositories:

	Preprint

	Programming language

	GitHub repository

	Link

	Python

	neurolibre/template [https://github.com/neurolibre/template]

	Link

	C++

	neurolibre/cpp [https://github.com/neurolibre/binder-cpp]

To use them, make sure to read the following steps:

	Choose your template from the list below and create a new repository into your (or to an organization) account.

	Follow the instructions in the README file.

The following section provides further detail about the structure of a NeuroLibre preprint repository.

1. 📁 The binder folder

[image: _images/binder_folder.png]

1.1 ⚙️ Runtime

1.1.1 Preprint-specific runtime dependencies

The execution runtime can be based on any of the (non-proprietary) programming languages supported by Jupyter. NeuroLibre looks at the
binder folder to find some configuration files such as a requirements.txt (Python), R.install (R), Project.toml (Julia)
or a Dockerfile.

See also

The full list of supported configuration files is available here [https://mybinder.readthedocs.io/en/latest/using/config_files.html].

1.1.2 Environment configuration for NeuroLibre

You should try to make your environment clean and concize, that is why the prefered configuration file for NeuroLibre are the
requirements.txt.

It should be small (to keep environment building and loading as short as possible), and versionnized (so your
environment is fully reproducible, and cache-able).

For example this requirement is bad because it has lot of unnecessary dependencies:

numpy
scipy
jupyter
matplotlib
Pillow
scikit-learn
tensorflow

On the other hand, this one is concise, reproducible and will take much less time to build:

scikit-learn==0.16.1
tensorflow==2.4.0

Warning

Starting from pip 20.3, the package resolver changed its behaviour [https://pip.pypa.io/en/stable/user_guide/#changes-to-the-pip-dependency-resolver-in-20-3-2020] to reduce inconsistencies in software versions.
As a consequence and if your submission has lot of interdependent dependencies, your build may take a while.
This is typically the case if you see messages like this during the build:

INFO: pip is looking at multiple versions of linkify-it-py to determine which version is compatible with other requirements. This could take a while.

Warning

Make sure that your whole environment is not too big (<1GB of installed dependencies), and installation is fast (<10min).
Large environments increase the binder spawn time, impact your computing performance, and takes a lot of space on our servers.

Tip

If your binder build fails with timeout errors, this is because your environment is too complex and slow to build.
But thanks to Docker internal caching mechanism, you can still re-try to submit the same repository so it catch-up the build.

Best practices when using Dockerfiles

While Neurolibre can build a Dockerfile environment, we don’t recommend it as this can be a source of lot of erros during build.
If you don’t have choice, please make sure to follow these specific instructions:

	We recommend that you use our base image to help you build your Dockerfile for Neurolibre:

FROM neurolibre/book:latest
...

	Using a Dockerfile will tend to increase the size and complexity of your environment. Make sure to have layers (RUN command) that do not exceed 1GB to help the build and push process.

	Keep the directory layout the same as your github repository. Modifying this layout in the Dockerfile is a high source of RoboNeuro build errors. For example, you should not:

RUN git clone bad_layout && cd bad_layout
WORKDIR bad_layout

	DO NOT install and download data into the docker image, check the data section for that.

See also

Read the Dockerfile instructions for binderhub [https://mybinder.readthedocs.io/en/latest/tutorials/dockerfile.html] for more information.

1.1.3 NeuroLibre dependencies

Our test server creates a virtual environment in which your content is re-executed to build a Jupyter Book. To enable this, we need some
Python packages.

If you are using configuration files, we need latest version of jupyter-book in a requirements.txt file:

jupyter-book
jupytext
(if applicable) repo2data

1.2 💽 Data

NeuroLibre offers generous data storage and caching to supercharge your preprint. If your executable content consumes input data, you need to read this section carefully. Indeed, we don’t allow data download other than through our method.

To download data, NeuroLibre looks for a repo2data [https://github.com/SIMEXP/Repo2Data] configuration file: data_requirement.json.
This file must point to a publicly available dataset, so it can be available during preprint runtime.

See also

Repo2data can download data from several resources including OSF, datalad, zenodo or aws. For details, please visit the documentation [https://github.com/SIMEXP/Repo2Data].

Example preprint templates using repo2data for caching data on NeuroLibre servers:

	Download Resource

	GitHub repository

	Nilearn

	neurolibre/repo2data-nilearn [https://github.com/neurolibre/repo2data-caching]

	OSF

	neurolibre/repo2data-osf [https://github.com/neurolibre/neurolibre-osf-test]

Warning

RoboNeuro may fail downloading relatively large datasets (exceeding 5GB) or if the data server is to slow.
This is because of some limitations, independent from us, in our software stack.
If you face some problems when downloading your data, please create an issue in your github repository so a Neurolibre admin can check it.

Help RoboNeuro find your data during book build

Repo2Data [https://github.com/SIMEXP/Repo2Data] downloads your data to a folder named data, which is created at the base of your repository.

Note

We suggest using repo2data locally before you request a RoboNeuro preview service.
Matching this data loading convention will increase your chances of having a successful NeuroLibre preprint build, and will make
your data dependency agnostic to computer.

Assuming you are running a notebook on NeuroLibre and have a requirement file as:

{ "src": "download_my_brain(data_dir=_dst);",
"dataLayout": "neurolibre",
"projectName": "PROJECT_NAME"}

	A code cell in a content/my_notebook.ipynb would access data by:

import nibabel as nib
import os
img = nib.load(os.path.join('..', 'data', 'PROJECT_NAME', 'my_brain.nii.gz'))

	A code cell in a content/01/my_01_notebook.ipynb would access data by:

import nibabel as nib
img = nib.load(os.path.join('..', '..', 'data', 'PROJECT_NAME', 'my_brain.nii.gz')) # In this case, 2 upper directories

If the data directories in your code cells are not following this convention, RoboNeuro will fail to re-execute your notebooks and interrupt the book build.

The best way to access data on Neurolibre servers is using the repo2data python api. This way all the data paths will be automatically recognized.
For example if you have a notebook in content/my_notebook.ipynb:

from repo2data.repo2data import Repo2Data
install the data if running locally, or points to cached data if running on neurolibre
data_req_path = os.path.join("..", "binder", "data_requirement.json")
download data
repo2data = Repo2Data(data_req_path)
data_path = repo2data.install()

1. 📁 The content folder

[image: _images/content_folder.png]

2.1 Executable & narrative content

NeuroLibre accepts the following file types to create a preprint that is beyond PDF:

	✅ Jupyter Notebooks,

	✅ MyST [https://github.com/neurolibre/template/blob/main/content/02-simple-myst.md] formatted markdown.

	✅ Plain text markdown files.

	✅ A mixture of all above

Warning

❌ We don’t accept markdown files with narrative content only, that is not really beyond PDF :)

Note

✅ You can organize your content in sub-folders.

2.1.1 Writing narrative content

Jupyter Book provides you with an arsenal of authoring tools to include citations, equations, figures, special content
blocks and more into your notebooks or markdown files.

See also

Please visit the corresponding Jupyter Book documentation page [https://jupyterbook.org/content/index.html#write-narrative-content] for guidelines.

2.1.2 Writing executable content

Based on the powerful Jupyter ecosystem, NeuroLibre preprints allow you to interleave computational material with your narrative.
You can add some directives and metadata to your code cell blocks for Jupyter Book to determine the format and behavior of the outputs,
such as interactive data visualization.

See also

Please visit the corresponding Jupyter Book documentation page [https://jupyterbook.org/execute/index.html#write-executable-content] for guidelines.

There are two mandatory files that we look for in the content folder: _config.yml and _toc.yml. These files
help RoboNeuro structure your book and configure some settings.

2.2 ⑆ Table of contents

The _toc.yml file determines the structure of your NeuroLibre preprint. It is a simple configuration file
specifying a table of content from all the executable & narrative content found in the content folder (and in subfolders).

See also

The complete reference for the _toc.yml can be found here [https://jupyterbook.org/customize/toc.html].

2.3 ⚡︎ Book configuration

The _config.yml file governs all the configuration options for your Jupyter Book formatted preprint, such as adding a logo,
enable/disable interactive buttons or control notebook execution and caching settings. Few important points:

	Please ensure that the title and the list of authors matches those specified in the paper.md.

title: "NeuroLibre preprint template" # Add your title
author: John Doe, Jane Doe # Add author names

	Please ensure that the repository address is accurate.

repository:
 url: https://github.com/username/reponame # The URL to your repository

	By default NeuroLibre force the notebook execution, still make sure you have it enabled.

execute:
 execute_notebooks: force

See also

The complete reference for the _config.yml can be found here [https://jupyterbook.org/customize/config.html].

1. 📝 Static summary

[image: _images/paper.png]
The front matter of paper.md is used to collect meta-information about your preprint:

title: 'White matter integrity of developing brain in everlasting childhood'
tags:
 - Tag1
 - Tag2
authors:
 - name: Peter Pan
 orcid: 0000-0000-0000-0000
 affiliation: "1, 2"
 - name: Tinker Bell
 affiliation: 2
affiliations:
- name: Fairy dust research lab, Everyoung state university, Nevermind, Neverland
 index: 1
- name: Captain Hook's lantern, Pirate academy, Nevermind, Neverland
 index: 2
date: 08 September 1991
bibliography: paper.bib

The corpus of this static document is intended for a big picture summary of the preprint
generated by the executable and narrative content you provided (in the content) folder. You can include citations
to this document from an accompanying BibTex bibliography file paper.bib.

To check if your PDF compiles, visit RoboNeuro preprint preview page [https://roboneuro.herokuapp.com], select NeuroLibre PDF option and enter your repository address.

See also

For more information on how to format your paper, please take a look at JOSS documentation [https://joss.readthedocs.io/en/latest/submitting.html#example-paper-and-bibliography].

 _static/comment-close.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/doc_logo.png

_images/binder_folder.gif
Powered by

@ binderhub

Unl|e executable & reproducible NRP runtimes

_static/logo_neurolibre_small.png

_images/binder_folder.png
£% Pajgd B 2o

DATA
Files in this folder specify two critical components

of a Neurol ibre preprint:

1. Runtime dependencies (required)
2. Dataset needed for the analysis (optional)

NeurolLibre

The binder folder

_static/minus.png

_static/file.png

_images/card_tb.png
&

(APOHERHOUSE \)

ANOPENBOOK 1o
EXECUTABLE
ONUNE

_images/content_folder.png
jupyter

+ Table of contents (_toc.yml)
+ Jupyter Book configuration (_config.yml)

The content folder

_images/content_interact.gif
content

Jupyter
MyST

Jupyter {book

nav.xhtml

 Table of Contents

 		
 NeuroLibre Reproducible Preprints

 		
 Structure your NRP repository

 		
 🟠 The content folder

 		
 🟢 The binder folder (runtime)

 		
 🔵 The binder folder (data)

 		
 ⚫️ The companion PDF

 		
 Test your NRP

 		
 Test locally

 		
 1. Install Jupyter Book

 		
 2. Manage your data

 		
 3. Book build

 		
 Testing on NeuroLibre servers

 		
 Debugging for long NeuroLibre submission

 		
 Submit your NRP to NeuroLibre

 		
 Reader guidelines

 		
 Reviewer guidelines

 		
 Technical review Criteria

 		
 Code review

 		
 Scientific review

 		
 How to interact with authors

 		
 How to interact with editors and NeuroLibre

 		
 Conflict of interest

 		
 Attribution

 		
 Infrastructure overview

 		
 Bare-metal to BinderHub

 		
 Pre-setup

 		
 Docker-specific preparations

 		
 Spawn a BinderHub instance using Docker

 		
 Appendix A

 		
 Bare-metal to local Docker registry and volumes

 		
 Instance spawning

 		
 External floating IP

 		
 Firewall

 		
 DNS specific considerations

 		
 Volumes creation

 		
 Docker registry setup

 		
 BinderHub considerations

 		
 BinderHub test mode

 		
 First time setup

 		
 Code integration

 		
 Submission workflow backend

 		
 Data server and python API

 		
 FAQ - Frequently Asked Questions

 		
 How can I test a NeuroLibre submission ?

 		
 Can I submit a non-github repository ?

 		
 What are the hardware limits on NeuroLibre ?

 		
 I want to contribute, how can I do that ?

 		
 Which languages does NeuroLibre support ?

 		
 What type of review are you doing ?

 		
 How do I manage datasets with NeuroLibre ?

 		
 Which version of jupyter-book and repo2data should I use ?

 		
 How can I cache my experiments ?

 		
 Can I use Dockerfile for my submission ?

_static/plus.png

_images/launch_instance.png
Project v
Project / Compute / Instances

Compue v Instances

rcero - o Peey— ey—

Images Displaying 15 ftems

Key Pairs O Instance Name Image Name IPAddress Flavor Key Pair Status Availability Zone ~ Task Power State Time since created Actions

_images/nrp_init.png
Jupyter
° content » ﬁ
"
~'3 Executable runtime configs @
MyST ‘ﬁs’ = - M recognized by BinderHub [
Markedly Structured Tex g

Jupyter{book

COMPANION PDF {)
paper.bib M Config file to locate the dataset
i o

that is publicly available
£5

_images/dns_registry.png
=]ol-Jalolel/]=]o)

Overview Analytics NS Firewall Access Caching Workers Page Rules Network Traffic

DNS management for conp.cloud

o]=]a)s]+]B)

Stream Custom Apps Scrape Sh..

Q search DNS Records

Advanced

Type Name Content T

Proxy status

_static/up-pressed.png

_images/instance_menu.png
& months, 3 weeks

creatosnapano | - |

Disassociate Fioating IP
Altach Itertace

Detach Interface
EditInstance

Atach Volume

Detach Volume

Update Metaoata
Retrieve Password

Edit Securty Groups
Edit Port Securiy Groups
Gonsole

View Log

Pause Instance
Suspend Instance
Shelve Instance
Resize Instance

Lock Instance

Soft Reboot Instance
Hard Reboot Instance
Shut Off Instance
Rebuid Instance
Delete Instance

_static/up.png

_static/ajax-loader.gif

_images/paper.png
NeuroLibre

— INeurolere

Author information and a brief summary

The paper.md and paper.bib

_images/preview_magn.png
r‘? Neurolere

RoboNeuro preview service

_static/comment-bright.png

